Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data

Analysis of incomplete data is a big challenge when integrating large-scale brain imaging datasets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many la...

متن کامل

Maximum Mean Discrepancy Based Multiple Kernel Learning for Incomplete Multimodality Neuroimaging Data

It is challenging to use incomplete multimodality data for Alzheimer's Disease (AD) diagnosis. The current methods to address this challenge, such as low-rank matrix completion (i.e., imputing the missing values and unknown labels simultaneously) and multi-task learning (i.e., defining one regression task for each combination of modalities and then learning them jointly), are unable to model th...

متن کامل

Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps

Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...

متن کامل

Bayesian multi-task learning for decoding multi-subject neuroimaging data

Decoding models based on pattern recognition (PR) are becoming increasingly important tools for neuroimaging data analysis. In contrast to alternative (mass-univariate) encoding approaches that use hierarchical models to capture inter-subject variability, inter-subject differences are not typically handled efficiently in PR. In this work, we propose to overcome this problem by recasting the dec...

متن کامل

Multi-Task Learning in Heterogeneous Feature Spaces

Multi-task learning aims at improving the generalization performance of a learning task with the help of some other related tasks. Although many multi-task learning methods have been proposed, they are all based on the assumption that all tasks share the same data representation. This assumption is too restrictive for general applications. In this paper, we propose a multi-task extension of lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: NeuroImage

سال: 2012

ISSN: 1053-8119

DOI: 10.1016/j.neuroimage.2012.03.059